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Abstract—The electromagnetic wave propagation in a partially filled
ferrite waveguide is studied by using both the quasi-st:atic and exact
analyses, Here, the ferrite is assumed to be lossless and completely
magnetized. The cutoff and resonant frequencies are examined analytically
to predict all possible modes, and numerical methods are then used to

study the complete dispersion characteristics. Because of the geometrical

generality of the problem, the fully filled ferrite waveguide and the ferrite
column in free space can be considered as special cases. Th{eclassifications

of the modes existing in various parametric regions arc clarified. The
effects of the ratio of the fernte-to-waveguide radius and the dc axial

magnetic field on the behaviors of the modes are studied and discussed.

For large values of the phase constant, asymptotic dispersion equations
can be derived, and turn out to be the same in both analyses. A comparison
between the two sets of resalts is also made to examine th,evalidity of the
qoasi-static analysis. The method of analysis used in ths present paper
is similar to the one used in the corresponding paper on partially iilled

plasma waveguides published previously [1].

NOTATION

In a cylindrical coordinate system (r,#,z), the fields are

assumed:

F(r,f$,z)

k

n

co

am

k.

c

0 = oJ/riJm

Qff = o@om

y = k[ko

so = b/a

q = co.blc

= F(r) exp [j(kz + F@ – OJ~)]

phase constant;

azimuthal variation number;

operating frequency;

saturation magnetization frequency;

free-space phase constant;

velocity of light in free space;

normalized frequency;

normalized gyromagnetic frequency;

normalized phase constant;

ratio of radii (b and a are the radii of

ferrite column and waveguide, respec-

tively);

normalized ferrite column ra~dius;

E(r) = & El(r) H(r) = ~~o Hi(r)

where lEl(r) and lHl(r) are the normalized field vectors,

and 80 and V. are the permittivity and perrneubility of free

space, respectively,

ji permeability tensor;

P = #l?? + j@$ + pl&$ – jp2@ + 22

PI = 1 + QH/(QH’ – !i-P) p~ = – K)/(QHz – @)
E,: relative dielectric constant of the ferrite

column;
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.l.(x),Nn(x) the Bessel functions of the first and second

kind, respectively;
lH(x),K~(x) the modified Bessel functions of the first and

second kind, respectively.

L INTRODUCTION

sOME ASPECTS OF electromagnetic wave propagation

in fully filled and partially filled ferrite waveguides as

well as in ferrite column in free space have been studied

theoretically by several authors. The theoretical analyses

were mainly based on two approaches: the quasi-static ap-

proximation and the exact analysis. In the quasi-static

approximation, the RF electric fields are so small that they

can be neglected, and therefore, the fields are derived from

a scalar potential [2]–[6]. In the exact analysis, the fields

are obtained by solving the full Maxwell’s equations [7]-[12].

By using the quasi-static approximation, Trivelpiece et al.

[2] formulated the dispersion equations for the fully filled,

partially filled ferrite waveguides, and for the ferrite column

in free space. However, only the dispersion relations for the

fully filled ferrite waveguide and for the ferrite column in

free space were computed for the axisymmetric (n = O) and

the dipolar modes (n = ~ 1). Joseph and Sch16mann [3]

solved the dispersion equation for the ferrite column, in

free space for both cases (n = O, + 1), and their results

were experimentally verified by Bini et al. [4] and by Olson

et al, [5]. Although Masuda et al. [61 examined the par-

tially filled ferrite waveguide problem, their work was

restricted to the dipolar surface-wave modes.

With the exact analysis, Kales [7] formulated the dis-

persion equations for the fully filled and partially filled

ferrite waveguides. However, he discussed the cutoff fre-

quencies for the fully filled case only qualitatively, and no

numerical results were given. Suhl and Walker [8] con-

sidered in detail the fully filled waveguide. Although

Tompkins [9] tackled the partially filled ferrite waveguide,

his work was restricted to a specific frequency and a weak

dc magnetic field. Recently, Duputz and Priou [10] have

initiated a computing method to solve the dispersion

equations for the fully filled and partially filled wave-
guides by assuming that the ferrite is Iossy. However, their

work is restricted to the TEI,1 mode at a fixed frequency

of 9.5 GHz. The propagation characteristics of the ferrite

column in free space were investigated by Schott et al. [11]

and Tao et al. [12], who did not consider cutoffs and

resonances.
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Fig. 1. (a) Magnetostatic dispersion curves for n = ~ 1, q = 0.5,!& = 0.5, so = 0.9,0.5. (b) Magnetostatic dispersion
curves for n = *1, q = 0.5, f2~ = 0.5, so = 1, 0.1.

11. THE QUASI-STATIC DISPERSION CHARACTERISTICS

The field solutions are derived on the assumption that

the phase velocities of the waves are much less than the

velocity of light, so that the RF electric fields can be

neglected. The magnetic fields are derived from a scalar

function 0, i.e., H = V@. This approximation is, therefore,

called magnetostatic approximation. By imposing the

boundary conditions (B, = O at r = a, the continuity of

B, and Hz at r = b), the dispersion equations are obtained

and given in Appendix I.

A. Cutoffs

The frequencies at which propagation just begins, i.e.,

Y = Q are referred to as the cutoff frequencies. When y
approaches zero, the right-hand side F. of (Al) is ap-

proximated by

lim F. = –(lnl/b)(l – s~lnl)/(l -t s~lnl). (1)
y+o

From (A2), U2 <0 in regions Ia (O < !2 < !&) and Ib

(Q > Q.) in Figs. 1 and 2 and u’ >0 in region II
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Fig. 2. (a) Magnetostatic dispersion curves for n = ~ 1, q = 0.5, % = 1.7, so = 0,9,0.5. (b) Magnetostatic dispersion
curves fern = *1, q = 0.5, 221, = 1.7, so = 1,0.1.

(f2~ < Q < QC) where f2C = lf2~(!i211 + 1)11/2’. In the case

U2 < 0, the left-hand side of (Al) can be approximated by

lim G*H = (lnl/b)(Q~ T Q + 1)/(Q~ T Q) (2)
Y+o

where the upper (lower) sign corresponds to positive

(negative) n. From (1) and (2) only one cutoff frequency is

found for positive n:

Q, = CIH + 6(1 + 6)-1 (3)

where d = (1 + s~lnl)/(l — s~l”l). When so tends to zero

(ferrite column in free space), Q, = QH + (1/2), and for

the fully filled case, Q, = !& + 1. In the case U2 >0,

G*. can oscillate from – m to + m [1]. Hence there will

bean infinite number of solutions in region II. From (A2),

it can be shown that Clc is the common cutoff frequency for
all the modes in this region.

B. Resonances

The frequencies at which the phase constant tends to
infinity are referred to as the resonant frequencies. When y
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tends to infinity, F. can be approximated by

Iim F. = –kOy <0. (4)
y+m

In the case U2 <0, G~n k reduced to

lim G*E = koyplt[z >0. (5)
y+m

Therefore, there is no resonant frequency in regions Ia and

Ib, However, since F. = O for the fully filled case (& = 1),

there exists a resonant frequency at Q = f2C. In the case

U2 > 0, since G~H is oscillatory, there exists an infinite

number of roots for (Al). For large values of y, the disper-

sion equation (Al ) can be simplified by a similar method

as used in [1], to

Qqym =
(

(-P,)’/’[e + 7C(W- 0.75)], n = 1
(–pJ’/2[fI + Z(WZ+ 0.25)], n = – 1 (6)

where tan (3 = (–pl)l/z, O < 0 c 7c12, andm = 1,2,3,0 . . .

The mode order m should be chosen consistently with the

mode designation discussed later in Section III. For the

fully filled case, we obtain

t2qy~ = Z(–pl)liz(m – 0.25), n=+l (7)

where m = 1,2,3, ” “.. From (6) and (7), the gyromagnetic

resonance frequency Q = C& is found as the resonant

frequency for all the modes.

C. Numerical Results

A numerical iterative procedure is now used to solve the

dispersion equations (Al) and (A2). Throughout this paper,

the normalized ferrite column radius is chosen at a fixed

value q = 0.5, which could, for example, correspond to

b = 1,5 cm for cow = 1010 rad/s. The results are shown in

Fig. l(a) and (b) for a weak dc magnetic field (fl~ = 0.5)

and in Fig. 2(a) and (b) for a strong dc magnetic field

(QH = 1.7). The representative ratios of radii ,sO= 0.9 and
so = 0.5 have been chosen for the study of the dispersion

characteristics of the partially filled ferrite waveguide. The

two limiting cases so = 1 (the fully filled ferrite waveguide)

and so = 0.1 (almost a ferrite column in free space) are

also presented in Fig. l(b) for !& = 0.5 and in Fig. 2(b)

for i2~ = 1.7. In region Ia, cutoffs and resonances are non-

existent and numerical probing has yielded no solutions,

leading to the conclusion that no modes exist in this region.

According to their cutoffs and their physical characteristics,

the various modes can be classified into surface-wave modes

and volume modes. The surface-wave modes designated

*~S~ are characterized by the concentration of field energy
at the ferrite-air interface, and the volume modes designated

‘HP”0 are characterized by the predominant distribution ofq nm

field energy within the volume of the ferrite column, The

proposed mode designations are consistent with those for

the partially filled plasma waveguide [1].

For relatively weak magnetic fields, it is seen from Fig,

l(a) and (b) that the surface-wave modes are restricted to

.5

“1,3

.5

‘1,40

.5

“-1,3

.5

“-1,40

TABLE I
RESULTS OF MAGNETOSTATTC ANALYSIS

Computed Results

.7

.6

.7

.6

.7

.6

flq Y

8.27

15.42

129.18

234.22

11,27

20.%3

132.43

240.10

Asymptotic Results

T

.7 8.19

.6 15.34

1

.7 129.18

.6 I 234.21

I
.7 11.46

.6 21.26

.7

I

133.26

.6 I ‘240.13

the region where Y is small. These modes start at the cutoff

freque~cy Cl. abo~e Q=, slope down with decreasing Q, and

terminate at a point on the line Cl = Q=, where its group
velocity can be analytically shown to be zero [16]. They

are all backward waves and the dependence of S2, on so is

also seen. The numerical method verifies that the surface-

wave modes exist only for positive n as predicted previously.

The volume modes are entirely restricted to the slow-wave

region on the right of the dotted line. These modes start

from Q = QC, slope down with decreasing Q, and asymp-

totically approach f.2 = fl~. They are all backward slow

waves. As so increases, they are shifted to the region of

larger y, and near the gyromagnetic resonance, they are

almost independent of so. For relatively strong magnetic

fields, as seen from Fig. 2(a) and (b), the surface-wave and

volume modes retain their basic features except that the

phase velocities increase and some volume modes pass the

light line becoming fast waves. Note that the V! i,l mode

does not exist, i.e., its root cannot be found. The first root

ua lies in the second interval of the quotient function. As

will be seen later, the V--!i, ~ does exist in the exact analysis,

This discrepancy is due to the fact that the magnetostatic

dispersion relation is not strictly valid at small values of y,

For the higher order volume modes, the asymptotic

dispersion equation (6) was used to obtain the dotted curves

V~i~40 and V$i~50 shown in Figs. 1(a) and 2(a). These

as~mptotic results agree with those computed from the

dispersion equations (Al) and (A2). It is observed from

Table I that the agreement between the two results can be

seen even for the third-order modes. This establishes the

validity of the asymptotic dispersion equations. The volume

modes can, therefore, be obtained without a numerical

iterative procedure in order to save the computing time [1].
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Fig. 3. (a) Cutoff frequencies of transverse electric modes, n = ~ 1. (b) Cutoff frequencies of transverse magnetic modes,
n=

III. EXACT DISPERSIONCHARACTERISTICS

The exact field solutions are now derived directly from

Maxwell’s equations. The dispersion equations obtained

through the imposition of the boundary conditions (Ez = O,

B,= Oatr= a, the continuity of E=, HZ, B,, and H+ at

r = b) are given in Appendix II,

A. Cuto#s

In general, the modes are hybrid in nature. However, at

cutoff it can be shown that they are split up into purely

-L1
L,,

transverse electric (TE) modes and purely transverse mag-

netic (TM) modes [7]. The dispersion equations (Al O) and

(Al 1) for the TE modes are independent of Q~ and the sign

of n. The t2~ independence can be explained by the fact

that, at cutoff, the RF magnetic field is parallel to the dc

magnetic field HO, so that the ac magnetic field does not

contribute to the motion of the magnetization vector and

is, therefore, unaffected by HO. Equations (A1O) and (Al 1)

are numerically solved for several modes, and the solutions

are plotted against the normalized ferrite column radius q
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Fig. 4. (a) Exact dispersion curves for n = i-1, q = 0.5, flH = 0.5, sO = 0.9,0.5, .s, = 10. ––- magnetostatic results.
(b) Exact dispersion curves for n = ~ 1, g = 0.5, Q~ = 0.5, so = 1, 0.1, ., = 10---- magnetostatic results.

in Fig. 3(a). Each cutoff curve is designated as TE.PSO,where

p indicates the increasing order of the cutoff frequency

curves. For the fully filled waveguides, the dispersion

equation at cutoff is obtained by setting b = a in (A1O). As

q increases, the TE cutoff frequencies decrease rapidly and

tend to zero. For a fixed value of q, they increase consider-

ably as so increases,

The dispersion equations (A12) and (A13) for the TM

modes depend not only on the sign of n but also on f2~,

because, at cutoff, the RF magnetic field is transverse to

Ho, so that the RF magnetic field contributes to the motion

of the magnetization vector and is now affected by HO. The

TM cutoff frequencies are plotted against QH in Fig. 3(b).

The dotted curves Q = f& + 1 (U12 = O) and Q = Q=

(U12 = m) divide the Q – Q~ plane into three regions:

A(f2<f2C), B(Qc<f2e 0~+1), and C(f2 >&2~+ l).
UI is real in regions A and C, and imaginary in region B.

It is clear that the curve Q = f2C separates two groups of

modes. One occupying region A determines the cutoff fre-

quencies of the volume modes and are designated as I&s”.

The others occupying regions B and C determine the cutoff

frequencies of the surface-wave modes and the modified
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Fig. 5. (a) Exact dispersion curves for n = ~ 1, q = 0.5, !2M = 1.7, .ro = 0.9,0.5, e, = 10---- magnetostatic results.
(b) Exact dispersion curves for n = f 1, q = 0.5, ~H = 1.7, So = 1, 0.1, % = 10.

waveguide modes, and are designated as TMnPsO. The cutoff of .l.(ula) = O is ula = O, i.e., Q = fl~ + 1 which forms

curves P.PsOstart from QC and increase rapidly along the the boundary curve between regions B and C.

line Q = Q. as f2~ increases, but when Q~ is large, they are

almost independent off& It can be shown analytically that B. Resonances

all the cutoff curves designated as ~~nPsO are asymptotic to When y tends to infinity, the radial wave numbers given

the curve Q = f2C in the limit of Q ~ co. For the fully in (A4) can be approximated to obtain the magnetostatic

filled waveguide, the dispersion equation at cutoff is ob- results, i.e., zqz = U2, UZ2 = – kz. In region L % is

tained by setting b = a in (A12), i.e., Jm(ula) = O, which imaginary. Equation (A3) can be analytically solved to

is independent of the sign of n. The lowest ordler solution prove that there are no resonant frequencies in this region.
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Fig. 6. (a) Modified waveguide modes for n = ~ 1, q = 0.5, t2H = 0.5, sO = 0.9, 0.5, 8, = 10, (b) Modified waveguide
modes fern = ~1, q = 0.5, i2~ = 0.5, s0 = l,er = 10.

In region II, UI is real. Equation (A3) can be approximated

to-yield the same asymptotic dispersion equation (6).

For the fully filled case, the dispersion equation is ob-

tained by letting a = b in (A3) and the asymptotic disper-

sion equation (7) is again found, Using (6) and (7), the

gyromagnetic resonance frequency can again be found.

C. Numerical Results

The values of parameters used for the magnetostatic

results are also adopted here, and er is chosen to be 10 as a

representative value of dielectric constant of ferrite [13].

The computational part is now much more complicated

than the one in the magnetostatic approximation because

of the mathematical complexity and the presence of the

following four parametric regions: I) where UI and Uz are

both imaginary, II) where UI is real and U2 imaginary,

III) where UI is imaginary and Uz real, and IV) where UI

and Uz are both real. These regions are indicated in Figs.

4-8, Note that when y ~ co regions I and II correspond to

regions I and II, respectively, in the quasi-static analysis.

All the modes existing in the magnetostatic approxima-

tion are shown in Fig. 4(a) and (b) for Sl~ = 0,5 and in
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Fig. 6. (c) Modified waveguiie modes for n = ~ 1, q = 0.5, QE = 0.5, so = 0.1, e, = 10.

Fig. 5(a) and (b) for fl~ = 1.7. As defined in Section II-C,

these modes are classified into the surface-wave modes,
Sns., and the volume modes, ~nms. All the modes which

cannot be predicted by the magnetostatic approximation

are presented in Fig. 6(a)–(c) for fl~ = 0.5 and in Fig.

7(a)–(c) for K& = 1.7. They are virtually the mcldes existing

in an isotropic ferrite waveguide but perturbed by the

presence of the dc magnetic field. These modes are, there-

fore, called the modified waveguide modes. In the case of

an open ferrite column, they are called the “modified di-

electric modes” [14]. Since these modes are not predicted

by the magnetostatic approximation, they are also named

the “dynamic modes,” [11], [12~1, [15]. The modified

waveguide modes are designated TEH~sOor TM.~sO accord-

ing to whether their cutoff frequencies are determined by

the TE or TM cutoff curves,

Since the TE cutoff frequencies take any values between

zero and infinity, they determine the cutoff frequencies of

all the categories of the modes. The TM cutoff frequencies

in regions B and C are larger than Q!Cand those in region A

are smaller than Q=. Therefore, the cutoff curves T~mPsO

determine the cutoff frequencies of the surface-wave modes

and the modified waveguide modes, and the cutoff curves

V&so determine the cutoff frequencies of the volume modes.

It is clear that the mode order m used in the dispersion

curves V.~sOis not necessarily the same as p in the cutoff
curves ~npsO. For example, the cutoff frequerlcies of the

V$~l modes in Fig. 4(b) are determined by the cutoff curve

ml,io”l in Fig. 3(a) and those of the Vji~z modes in Fig.

4(b) are determined by the cutoff curves V$~l in Fig. 3(b).

For a weak dc magnetic field (QH = 0.5), the volume

modes are strictly backward waves when ,sO= 0.1. The

surface-wave modes SI 0“g and S’l 0”5 exist but the S1O”1 and

S11” modes do not exist. The cutoff frequencies of the Slog

and S10”5 are determined by the cutoff curves TM 1,1°”9 and

TM I ,Io ~5, respectively, in Fig. 3(b). Therefore, the TM~~,l

and TM~~, ~ in Fig. 6(a) should be paired with S1O”9 and

S10.5, respectively.

For a strong dc magnetic field (QH = 1.7), the surface-

wave modes do not exist and all the lower order volume

modes are forward waves in region IV. The cutoff fre-

quencies of the Vji,l, V~i~l, V~i~l, Vl,20”5, V~i~l, and

V~~3 modes in Fig. 5(a) and (b) are now determined by the
—

cutoff curves TEl,ll”, TEI ,10”9, ml,l 0“5, ml,l O.1, and

TEl,zO”l , respectively, in Fig. 3(a), and the cutoff frequencies

of the V~i,z, V~i,3, 0.5 J/o.5
~$i~z, ~1, i , – 1,2, and V~i~2 modes

in Fig. 5(a) and (b) are determined by the cutoff curves

VJi,~, V~i,z, ~$i~l, ~~i~l, and V}i~l, respectively, in

Fig. 3(b). The clear transitions from the forward to the

backward wave nature are observed near the line U22 = O

especially for the modes with n = – 1.

To explain the existence of the surface-wave modes,

Fig. 8 is included. In this figure, Q~ = 0.1, i.e., very weak

dc magnetic fields, the surface-wave modes S1O‘9, S10’5, and

Slo”l exist. As seen in Fig. 3(a) and (b), the S1009, S10”5, and

Slo”l modes have their cutoffs determined by the cutoff
—

curves TMl,10”4, TMl,10”5, and TEl,lO”l, which are the

lowest cutoff frequencies among the TE and TM cutoffs
for f2~ = 0.1 and q = 0.5. Of course, these lowest cutoffs

are also above Q=. It is concluded that the existence of the

surface-wave modes depend on fl~{, q, and so. When these

parameters are fixed, they can only exist if their cutoffs are

the lowest ones among the TE and TM cutoffs and are

greater than QC. In fact, in Fig. 4(b), there is no surface-
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Fig. 7, (a) Modified waveguide modes for n = +1, q = 0.5, QH = 1.7, so = 0.9,0.5, e, = 10. (b) Modified waveguide
modes fern = +1, g = 0,5, Q.Y = 1.7, so = 1, e, = 10.

wave mode for SO = 0.1 because the lowest cutoff among

TE and TM cutoffs is the ml ,lo.~ cutoff which is lower

than Q=. The same arguments can be applied to explain

the nonexistence of the surface-wave modes in Fig. 5(a)

and (b). In the fully filled case, the TMI, ~1. mode expected

to be a surface-wave mode starts as a backward wave but

changes to a forward wave and becomes a modified wave-

guide mode. The nonexistence of the surface-wave modes in

the fully filled case can be explained by the fact that there is

no air–ferrite interface to guide the surface waves.

By varying fi2~, the behaviors of the surface-wave and

volume modes change as follows: When QH is small, the

volume modes have a common cutoff frequency Q= [Fig.

3(b)]. For small q, all the cutoff frequencies of the TE

modes are larger than f2C [Fig. 3(a)], which implies that the

TE cutoff curves do not determine the cutoff frequencies of

the volume modes. Consequently, for small QH and q, the

surface-wave and volume modes behave like those predicted

by the magnetostatic analysis. As QH increases, the multi-

mode region II is shifted up, while the cutoff frequencies of
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Fig. 7. (c) Modlified waveguide modes for n = ~ 1, q = 0.5, S2= = 1.7, $0 = 0.1, 8, = 10.

some lower order volume modes are now determined by the

TE cutoff curves which are independent of &. As a result,

the lower order volume modes start to propagate as the

forward waves.

For the fully filled case, the surface-wave modes do not

exist, while they exist in the partially filled case though

their existence depends on !&, SO, and q, As noted in

Section II-C, the V2i, ~ mode cannot be predicted in the

magnetostatic approximation. However, there exists the

V-!i,l mode [see Figs. 4(b) and 5(b)] in the exact dispersion

relation, which has a root of ula falling in the first interval

of the quotient function [1]. Hence each pair of volume

modes V; i,~ has values of Ula falling in the same interval

of the quotient function. In the partially fillecl case, each

pair of volume modes has roots of Ulb falling in different

intervals of the quotient function, i.e., there is no root in

the first interval of the quotient function for n = – 1.

For the higher order volume modes, the asymptotic

dispersion equation (6) was used to obtain the dotted curves

V$i~40 and V/~~O in Figs. 4(a) and 5(a). As shown in Table

II, the asymptotic results agree well with those computed

from (A3) even for the third-order modes. Therefore, the

asymptotic dispersion equations are very useful to obtain

the dispersion curves of the higher order modes, Note that

the agreement is better at !2 = 0.6 than at S2 = 0,7, This

can be explained by the fact that, near cutoff (!2 = 0.7),

the dispersion equation (A3) depends on SO, while the
asymptotic equation (6) is independcmt of SO, and that, near

resonance (!2 = O.fj), (A3) is almost independent of SO.

The dispersion curves of the modified waveguide modes

are shown in Fig. 6(a) and (c) for i2~ = 0.5 and in Fig. 7(a)

and (c) for i2~ = 1.7. It is seen that these modes are not so

strongly affected by the change of fl~, As Q increases, the

nc

1

TABLE II
RESULTSOFEXACTANALYSIS

— —— -
Cxnputed Results

---P
.7

.5

‘1,3

--w
.7

.5

“1,40

.6

.7
.5

“-1,3

.6

.5
.7

“.1,40

.6

9qY
—

7.?8

15.11

128.31

234,20

—

10.98

20.70

132,41

240.08

Asymptotic R,wI k

f-l

.7

.6

.7

.6

.7

.6

.7

.6

$iCly
.—

8.19

15.34

129.18

234.2

11.46

21.26

133.26

240.13

dispersion curves of the modified waveguide modes ap-
proach those of the corresponding modes existing in a

waveguide partially or fully filled with a dielectric column.

In particular, in the limit of !2 + m, all the dispersion

curves are asymptotic to the line y = 6,1/2 (U22 = O), which

is the normalized phase velocity of electromagnetic waves

in an infinite dielectric (8,) medium.
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In Figs. 6(c) and 7(a) and (c), the lower order modes have

their cutoffs at certain nonzero y on the line Q = Q,

where the group velocities of these modes at their cutoff

points are zero, In Fig. 6(c), the TM ~,20”1 mode was so

named since its cutoff frequency is determined by the cutoff

curve TM I ,20”1 in Fig. 3(b), and similarly for the higher

order modes. The lower order modes are named TM1 i,1

0“1 The pair of modes TM! ~ ~ are expected toand W-~ . -,
have the corresponding cutoffs determined by TM~~,l

curves, which terminate on the line Q = Q. in Fig. 3(b).

The W-lO”l mode behaves like the TEX~,1 mode in Fig, 8.

However, this mode cannot be predicted by the cutoff

curves shown in Fig. 3(a) and (b). It is an unpaired wave-

guide mode. The same situation as in Fig. 6(c) occurs in

Fig. 7(a) and (c), namely, the TMl,105, W- ~“”s, and W- ~“”g

modes in Fig. 7(a), and the TM~~,3, TM}~,2, TM~~,l, and

W_ ~01 modes in Fig, 7(c). As QI{ increases, more cutoff

curves merge into the line Q = Q and, therefore, more

modes start to propagate at nonzero y.

IV. COMPARISONSBETWEEN MAGNETOSTATIC AND

EXACT RESULTS

Both magnetostatic and exact analyses yield the same
asymptotic dispersion equations (6) and (7). This, therefore,

confirms the validity of the magnetostatic analysis for large

y. However, the modified waveguide modes cannot be

predicted by the magnetostatic analysis. The existence of

the surface-wave modes depends on !&, so, and q in the

exact analysis, whereas they always exist for any values of

!il~, so, and q. According to the exact analysis, the cutoff

frequencies of the volume modes are not necessarily equal

to S’2=which is a common cutoff frequency for the magneto-

static volume modes, and the departures from Q. become

larger as !& increases and so decreases. It is also noted that

the magnetostatic dispersion equations (Al) and (A2) are

independent of :,, causing a major error near cutoff.

For a relatively weak dc magnetic field, it is seen from

Figs. 1(a) and (b) and 4(a) and (b) that the validity of the’

magneto static results for the volume modes is observed in

region II, particularly for the higher order modes and for

large so. For a relatively strong dc magnetic field, the

validity of the magnetostatic results for the volume modes

is restricted to the vicinity of the gyromagnetic resonance,

as seen from Figs. 2(a) and (b) and 5(a) and (b). In the exact

analysis, the lower order volume modes are forward waves

in regions II and IV, while the magnetostatic volume modes

are always backward waves. Moreover, the V: i, ~ mode

could not be predicted in the magnetostatic approximation.

V. CONCLUSION

In general, the magnetostatic approximation is valid when

y is large. For a fixed value of y, the validity depends on the

strength of dc magnetic fields and the ratio of radii So. The

exact analysis gives a major correction to the magnetostatic

results in the fast-wave region, e.g., the modified waveguide

modes, the forward nature of the volume modes, and the

departure of their cutoff frequencies from Q. The surface-

wave modes always exist in the magnetostatic approxima-

tion. However, in the exact analysis they can only exist

when fl~, q, and so are such that the lowest cutoff frequency

among TE and TM cutoffs is above Q= and they do not

exist in the fully filled case. By varying so and Q~, the

fully filled waveguide, the ferrite column in free space, the

uniaxial ferrite waveguide, and the isotropic ferrite wave-

guide can also be recovered. According to the physical

characteristics of the various modes, they have been classified
into the volume modes ‘~V&, the surface-wave modes ‘~~~,

and the modified waveguide modes ‘;TE~. and ‘:TM~..
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Since the dipolar modes are considered, the n = 1 and

n = —1 modes have different phase velocities. Hence

Faraday rotation exists. The angle of’ the Faraday rotation

varies for different types of modes. Near the gyro-resonance

frequency, this angle is found to be largest. Thus our results

can have potential applications in gyrators, isolators,

circulators, and particularly phase shifters [10], [l 3], [17].

The group velocity of the volume modes in the vicinity

of the gyro-resonance is very small compared with the

velocity of light, This low group velocity can reduce the

length of a microsecond delay line from thousands of

meters to a few centimeters [4], [18], [19].

APPENDIX I

Magnetostatic Dispersion Relations

~1 JH’(ub) l.’(kb)Kn’(ka) -- lH’(ka)K~(’ (Al)— —
J“(ub)

~2:=
IJkb)K.’(ka) -- IB’(ka)lQkb)

,2=-C. (A2)
VI

APPENDIX II

Exact Dispersion Relations

.fJ%) .f@2)—. —
f,(ul) J(U2)

(A3)

u~,22
(

= k ~ &p(l + 2f2f1) + (&r – y3(2t2H2 + Q,I – 2S22)
o

2(SZH2 + QH – CF) 1

[{t2H2y2 - 8,(!2H2 + f2H - 2KY)}2

*
+ 4&r2Q2(,i2H2 + $& – Q2)]l/2

2QH(QH2 + QH – Q2)

( )G“(uo,b) – : y(qi) (1 – y2)- ‘ (A5)

[&r(p,2 - P22) – Y2(P1 * P2)I

A

o [-8, T J’(~J]- +]

+ (–‘rY2P2 +[&r(P12 – P22) – Y2P-llJ’’(Vi)

A )

( )

+ ~iJ.7 I(ujb) + ~~~ ~~(po,b)
J~(uib) l–y,

(A(i)

= ko(l – Y2) ~i = ko~ij i = 1,2

~(~i) = ‘2(”M’ - ‘2) + ‘, A = (EJJJ’ - (sj.Pl - Y’)’
P2Vi2

(A7)

~ ~po,b) = .l~’(pob)N.’(poa) – J~’(poa)N~’(p@ ~A8)
n

J.(pOb)IVn’(pOa) – J.’(pOa)~.(~ob)

G~(po,b) =
Jn’(pob)lVJpOa) – JilpOa)N~’(p@

(A9)
J.(@)~.(w) – J,,(~Oa)N,,(p#) .

APPENDIX III

At cutoff frequencies, the modes are no longer hybrid in

nature but are pure TE and TM. The dispersion relations

are as follows.

Transverse Electric Modes

J;(u2b) _ J.’(kobXV.’(koa) – J.’(koa)iV.’(kob)
(A1O)

e,J.(u2b) – JAW)~.’(k@ – J.’(koa)N,(kob) “

U22 = ko26r. (All)

Transverse Magnetic Modes

1

[

J.’(ulb)
+p2;

#12 – /422 ‘1 Ju(ulb) 1
_ Jfl’(kob)NH(koa) – Jfl(koa)NH’(kob) ~A12)—

J.(kob)Nu(kOa) – J~(kOa)~.(kOb)

u~ 2 = koz

[

&,[(QH + 1)2 – Q2] 1f2H2+f2H-fY“ (A13)
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