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Dispersion Characteristics of the Dipolar Modes
in a Waveguide Partially Filled with a
Magnetized Ferrite Column

S. LE-NGOC, G. L. YIP, SENIOR MEMBER, IEEE, AND S. NEMOTO

Abstract—The electromagnetic wave propagation in a partially filled
ferrite waveguide is studied by using both the quasi-static and exact
analyses. Here, the ferrite is assumed to be lossless and completely
magnetized. The cutoff and resonant frequencies are examined analytically
to predict all possible modes, and numerical methods are then used to
study the complete dispersion characteristics. Because of the geometrical
generality of the problem, the fully filled ferrite waveguide and the ferrite
column in free space can be considered as special cases. The classifications
of the modes existing in various parametric regions are clarified. The
effects of the ratio of the ferrite-to-waveguide radius and the dc axial
magnetic field on the behaviors of the modes are studied and discussed.
For large values of the phase constant, asymptotic dispersion equations
can be derived, and turn out to be the same in both analyses. A comparison
between the two sets of results is also made to examine the validity of the
quasi-static analysis. The method of analysis used in the present paper
is similar to the one used in the corresponding paper on partially filled
plasma waveguides published previously [1].

NOTATION

In a cylindrical coordinate system (r,¢,z), the fields are
assumed:

F(r,0,z) = F(r)exp [j(kz + np — wt)]

k phase constant;

n azimuthal variation number;

o operating frequency;

Oy saturation magnetization frequency;

ko free-space phase constant;

¢ velocity of light in free space;

Q = o/o, normalized frequency;

Qp = wg/w, normalized gyromagnetic frequency;

y = klkg normalized phase constant;

so = bla ratio of radii (b and a are the radii of
ferrite column and waveguide, respec-
tively);

g = w,b/c  normalized ferrite column radius;

E(r) = Ve E\(r) H(r) = V1o Hy(r)

where |Ey(r) and |H,(r) are the normalized field vectors,
and g, and p, are the permittivity and permeability of free
space, respectively.

permeability tensor;

= it + jufd + pidp — juspf + 22
=14+ 04/(Qg* - Q%) p, = —Q/(Qy* — Q)
relative dielectric constant of the ferrite
column;

:: =

1]
~
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J,(x),N,(x) the Bessel functions of the first and second
kind, respectively;
I(x),K,(x) the modified Bessel functions of the first and

second kind, respectively.

1. INTRODUCTION

OME ASPECTS OF electromagnetic wave propagation
S in fully filled and partially filled ferrite waveguides as
well as in ferrite column in free space have been studied
theoretically by several authors. The theoretical analyses
were mainly based on two approaches: the quasi-static ap-
proximation and the exact analysis. In the quasi-static
approximation, the RF electric fields are so small that they
can be neglected, and therefore, the fields are derived from
a scalar potential [2]-[6]. In the exact analysis, the fields
are obtained by solving the full Maxwell’s equations [ 7]-[12].

By using the quasi-static approximation, Trivelpiece et al.
[2] formulated the dispersion equations for the fully filled,
partially filled ferrite waveguides, and for the ferrite column
in free space. However, only the dispersion relations for the
fully filled ferrite waveguide and for the ferrite column in
free space were computed for the axisymmetric (n = 0) and
the dipolar modes (n = +1). Joseph and Schldmann [3]
solved the dispersion equation for the ferrite column in
free space for both cases (r = 0, +1), and their results
were experimentally verified by Bini ez al. [4] and by Olson
et al. [5]. Although Masuda ef al. [6] examined the par-
tially filled ferrite waveguide problem, their work was
restricted to the dipolar surface-wave modes.

With the exact analysis, Kales [7] formulated the dis-
persion equations for the fully filled and partially filled
ferrite waveguides. However, he discussed the cutoff fre-
quencies for the fully filled case only qualitatively, and no
numerical results were given. Suhl and Walker [8] con-
sidered in detail the fully filled waveguide. Although
Tompkins [9] tackled the partially filled ferrite waveguide,
his work was restricted to a specific frequency and a weak
dc magnetic field. Recently, Duputz and Priou {10} have
initiated a computing method to solve the dispersion
equations for the fully filled and partially filled wave-
guides by assuming that the ferrite is lossy. However, their
work is restricted to the TE, , mode at a fixed frequency
of 9.5 GHz. The propagation characteristics of the ferrite
column in free space were investigated by Schott et al. [11]
and Tao et al. [12], who did not consider cutoffs and
resonances.
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Fig. 1. s

curves forn = +1,¢q

I1. THE QUASI-STATIC DISPERSION CHARACTERISTICS

The field solutions are derived on the assumption that
the phase velocities of the waves are much less than the
velocity of light, so that the RF electric fields can be
neglected. The magnetic fields are derived from a scalar
function @, i.e., H = V®. This approximation is, therefore,
called magnetostatic approximation, By imposing the
boundary conditions (B, = 0 at r = a, the continuity of
B, and H, at r = b), the dispersion equations are obtained
and given in Appendix I.

(a) Magnetostatic dispersion curves forn = +1,¢

2 3
10 100 gy 10
(®)
= 0.5,Q5 = 0.5, 50 = 0.9, 0.5. (b) Magnetostatic dispersion
0.5, Quy = 0.5, 50 = 1, 0.1.
A. Cutoffs

The frequencies at which propagation just begins, i.e.,
y = 0, are referred to as the cutoff frequencies. When y
approaches zero, the right-hand side F, of (Al) is ap-
proximated by
lim F, = —(lnl/b)(1 — s3")/(1 + s5™). 1)
=0
From (A2), u* < 0 in regions Ia (0 < Q < Q) and Ib
Q> Q) in Figs. 1 and 2 and u*® > 0 in region II
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Qg < Q < Q) where Q, = |Qz(Qy + 1|2 In the case
u* < 0, the left-hand side of (A1) can be approximated by

1in; Gip = (/DYQy T+ D/Qy T (2

where the upper (lower) sign corresponds to positive
(negative) n. From (1) and (2) only one cutoff frequency is
found for positive n:

Q =04+ 601+ 57! (3)

(=]

108

9,

é).l 0.5. (b) Magnetostatic dispersion

o

where 6 = (1 + sZ"™)/(1 — s2!"1). When s, tends to zero
(ferrite column in free space), Q; = Qg + (1/2), and for
the fully filled case, Q; = Qg + 1. In the case u® > 0,
G, can oscillate from —oo to + oo [1]. Hence there will
be an infinite number of solutions in region II. From (A2),
it can be shown that Q, is the common cutoff frequency for
all the modes in this region.

B. Resonances

The frequencies at which the phase constant tends to
infinity are referred to as the resonant frequencies. When y
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tends to infinity, F, can be approximated by

@

lim F, = —kqy < 0.
y=roo
In the case u?> < 0, G, is reduced to
lim Gy, = kg, > 0. )

y> oo

Therefore, there is no resonant frequency in regions Ia and
Ib. However, since F, = 0 for the fully filled case (S, = 1),
there exists a resonant frequency at Q = Q.. In the case
u*> > 0, since Gy, is oscillatory, there exists an infinite
number of roots for (Al). For large values of y, the disper-
sion equation (Al) can be simplified by a similar method
as used in [1], to

Oy, = [(CHD2[0 + 7m — 075)],  n =1
fin = {(-M)”Z[e +am +025], n=—1 (6)

where tan 0 = (—pu,)2,0 < 0 < #j2,and m = 1,2,3,- - .
The mode order m should be chosen consistently with the
mode designation discussed later in Section III. For the
fully filled case, we obtain

Qq))m = n(_:ul)llz(m - 025)3 n=+1 (7)
where m = 1,2,3,---. From (6) and (7), the gyromagnetic
resonance frequency Q = Q is found as the resonant
frequency for all the modes.

C. Numerical Results

A numerical iterative procedure is now used to solve the
dispersion equations (A1) and (A2). Throughout this paper,
the normalized ferrite column radius is chosen at a fixed
value ¢ = 0.5, which could, for example, correspond to
b = 1.5cm for w,, = 10*° rad/s. The results are shown in
Fig. 1(a) and (b) for a weak dc magnetic field (Qy = 0.5)
and in Fig. 2(a) and (b) for a strong dc magnetic field
(Qy = 1.7). The representative ratios of radii s, = 0.9 and
5o = 0.5 have been chosen for the study of the dispersion
characteristics of the partially filled ferrite waveguide. The
two limiting cases s, = 1 (the fully filled ferrite waveguide)
and s, = 0.1 (almost a ferrite column in free space) are
also presented in Fig. 1(b) for Q4 = 0.5 and in Fig. 2(b)
for Qg = 1.7. In region Ia, cutoffs and resonances are non-
existent and numerical probing has yielded no solutions,
leading to the conclusion that no modes exist in this region.
According to their cutoffs and their physical characteristics,
the various modes can be classified into surface-wave modes
and volume modes. The surface-wave modes designated
@ngse are characterized by the concentration of field energy
at the ferrite-air interface, and the volume modes designated
@ny % are characterized by the predominant distribution of
field energy within the volume of the ferrite column. The
proposed mode designations are consistent with those for
the partially filled plasma waveguide [1].

For relatively weak magnetic fields, it is seen from Fig.
1(a) and (b) that the surface-wave modes are restricted to
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TABLE 1
RESULTS OF MAGNETOSTATIC ANALYSIS
Computed Results Asymptotic Results
Q QaY Q Qqy
7 8.27 7 8.19
.5
V1,3
.6 15.42 .6 15.34
7 129.18 .7 129.18
.5
Vi, 40
.6 234.22 .6 234.21
5 7 1n.27 7 11.46
Vo,3
) 20.93 6 21.26
.7 [ 132.43 7 133.26
.5
Vo140
.6 240.10 .6 240.13

the region where y is small. These modes start at the cutoff
frequency Q, above Q,, slope down with decreasing Q, and
terminate at a point on the line Q = Q,, where its group
velocity can be analytically shown to be zero [16]. They
are all backward waves and the dependence of Q, on s, is
also seen. The numerical method verifies that the surface-
wave modes exist only for positive # as predicted previously,
The volume modes are entirely restricted to the slow-wave
region on the right of the dotted line. These modes start
from Q = Q,, slope down with decreasing Q, and asymp-
totically approach Q = Q. They are all backward slow
waves. As s, increases, they are shifted to the region of
larger v, and near the gyromagnetic resonance, they are
almost independent of s,. For relatively strong magnetic
fields, as seen from Fig. 2(a) and (b), the surface-wave and
volume modes retain their basic features except that the
phase velocities increase and some volume modes pass the
light line becoming fast waves. Note that the V!; ; mode
does not exist, i.c., its root cannot be found. The first root
ua lies in the second interval of the quotient function. As
will be seen later, the V', | does exist in the exact analysis.
This discrepancy is due to the fact that the magnetostatic
dispersion relation is not strictly valid at small values of y.

For the higher order volume modes, the asymptotic
dispersion equation (6) was used to obtain the dotted curves
V234 and V2P, shown in Figs. 1(a) and 2(a). These
asymptotic results agree with those computed from the
dispersion equations (Al) and (A2). It is observed from
Table I that the agreement between the two results can be
seen even for the third-order modes. This establishes the
validity of the asymptotic dispersion equations. The volume
modes can, therefore, be obtained without a numerical
iterative procedure in order to save the computing time [1].
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Fig. 3. (a) Cutoff frequencies of transverse electric modes, n = 1. (b) Cutoff frequencies of transverse magnetic modes,
n= +1.

III. ExAct DISPERSION CHARACTERISTICS

The exact field solutions are now derived directly from
Mazxwell’s equations. The dispersion equations obtained
through the imposition of the boundary conditions (E, = 0,
B, = 0 at r = g, the continuity of E,, H,, B,, and H, at
r = p) are given in Appendix II.

A, Cutoffs

In general, the modes are hybrid in nature. However, at
cutoff it can be shown that they are split up into purely

transverse electric (TE) modes and purely transverse mag-
netic (TM) modes [7]. The dispersion equations (A10) and
(A11) for the TE modes are independent of Qy and the sign
of n. The Qy independence can be explained by the fact
that, at cutoff, the RF magnetic field is parallel to the dc
magnetic field H,, so that the ac magnetic field does not
contribute to the motion of the magnetization vector and
is, therefore, unaffected by H,. Equations (A10) and (A11)
are numerically solved for several modes, and the solutions
are plotted against the normalized ferrite column radius ¢



202

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1977

3
1 1 10 Agp 1O
(@)
Ib
------------- M
T
—————- ﬁﬂu
Ta
-1 3 1 i 1 L
. 2 3
01 1 1 10 gy 10
®)
Fig. 4. (a) Exact dispersion curves forn = +1,g = 0.5, Qz = 0.5, 5o = 0.9, 0.5, &, = 10. — — — magnetostatic results.
(b) Exact dispersion curves for n = +1, ¢ = 0.5, Qg = 0.5, 5o = 1, 0.1, & = 10. — - - magnetostatic results.

in Fig. 3(a). Each cutoff curve is designated as ﬁ,,ps% where
p indicates the increasing order of the cutoff frequency
curves. For the fully filled waveguides, the dispersion
equation at cutoff is obtained by setting b = a in (A10). As
q increases, the TE cutoff frequencies decrease rapidly and
tend to zero. For a fixed value of ¢, they increase consider-
ably as s, increases.

The dispersion equations (A12) and (A13) for the TM
modes depend not only on the sign of » but also on Qp,
because, at cutoff, the RF magnetic field is transverse to
H,, so that the RF magnetic field contributes to the motion

of the magnetization vector and is now affected by H,. The
TM cutoff frequencies are plotted against Q4 in Fig. 3(b).
The dotted curves Q = Qp + 1 (#;,°> = 0) and Q = Q,
(u,? = o) divide the Q — Qg plane into three regions:
AQ<Q),BOQ. <Q<Qy+ 1),andC(Q > Qy + 1).
U, is real in regions A and C, and imaginary in region B.
It is clear that the curve Q = Q, separates two groups of
modes. One occupying region A determines the cutoff fre-
quencies of the volume modes and are designated as V,,%.
The others occupying regions B and C determine the cutoff
frequencies of the surface-wave modes and the modified
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Fig. 5. (a) Exact dispersion curves forn = +1,g = 0.5, Q

(b) Exact dispersion curves for #

waveguide modes, and are designated as ﬁfl_,,ps". The cutoff
curves ¥V, start from Q, and increase rapidly along the
line Q = Q, as Qy increases, but when Qy is large, they are
almost independent of Q. It can be shown analytically that
all the cutoff curves designated as ’ﬁfff,,f“ are asymptotic to
the curve Q = Q, in the limit of Q — co. For the fully
filled waveguide, the dispersion equation at cutoff is ob-
tained by setting b = a in (A12), i.e., J,(u;a@) = 0, which
is independent of the sign of n. The lowest order solution

2
+l,q

of J,(u,@) = 0 is u;a = 0, i.e.,, @ = Qy + 1 which forms
the boundary curve between regions B and C.

B. Resonances

When 7y tends to infinity, the radial wave numbers given
in (A4) can be approximated to obtain the magnetostatic
results, ie., u2 = u?, u,2 = —k* In region I, u, is
imaginary. Equation (A3) can be analytically solved to
prove that there are no resonant frequencies in this region.
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In region II, u, is real. Equation (A3) can be approximated
to.yield the same asymptotic dispersion equation (6).

For the fully filled case, the dispersion equation is ob-
tained by letting @ = b in (A3) and the asymptotic disper-
sion equation (7) is again found. Using (6) and (7), the
gyromagnetic resonance frequency can again be found.

C. Numerical Results

The values of parameters used for the magnetostatic
results are also adopted here, and &, is chosen to be 10 as a
representative value of dielectric constant of ferrite [13].

0 ~qy 1O

®)
Fig. 6. (a) Modified waveguide modes forn = +1,g = 0.5, Q4 = 0.5, 5, = 0.9, 0.5, ¢

10. (b) Modified waveguide
,Qy = 05,50 = 1, 5 = 10.

The computational part is now much more complicated
than the one in the magnetostatic approximation because
of the mathematical complexity and the presence of the
following four parametric regions: I) where u; and u, are
both imaginary, II) where u, is real and u, imaginary,
IIT) where u, is imaginary and u, real, and IV) where u,
and u, are both real. These regions are indicated in Figs.
4-8. Note that when y — oo regions I and II correspond to
regions I and II, respectively, in the quasi-static analysis.
All the modes existing in the magnetostatic approxima-
tion are shown in Fig. 4(a) and (b) for Q4 = 0.5 and in
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Fig. 5(a) and (b) for Qy = 1.7. As defined in Section II-C,
these modes are classified into the surface-wave modes,
S,%, and the volume modes, V,,%. All the modes which
cannot be predicted by the magnetostatic approximation
are presented in Fig. 6(a)-(c) for Qy = 0.5 and in Fig.
7(a)-(c) for Qp = 1.7. They are virtually the modes existing
in an isotropic ferrite waveguide but perturbed by the
presence of the dc magnetic field. These modes are, there-
fore, called the modified waveguide modes. In the case of
an open ferrite column, they are called the “modified di-
electric modes” [14]. Since these modes are not predicted
by the magnetostatic approximation, they are also named
the “dynamic modes,” [117], [12], [15]. The modified
waveguide modes are designated TE,,* or TM,,,* accord-
ing to whether their cutoff frequencies are determined by
the TE or TM cutoff curves.

Since the TE cutoff frequencies take any values between
zero and infinity, they determine the cutoff frequencies of
all the categories of the modes. The TM cutoff frequencies
in regions B and C are larger than Q, and those in region A

are smaller than Q.. Therefore, the cutoff curves Wn;"
determine the cutoff frequencies of the surface-wave modes
and the modified waveguide modes, and the cutoff curves
V,,*° determine the cutoff frequencies of the volume modes.
It is clear that the mode order m used in the dispersion
curves V. is not necessarily the same as p in the cutoff
curves V, %. For example, the cutoff frequeticies of the
V¢, modes in Fig. 4(b) are determined by the cutoff curve
TE, %! in Fig. 3(a) and those of the V;!, modes in Fig.
4(b) are determined by the cutoff curves V2;!; in Fig. 3(b).

For a weak dc magnetic field (24 = 0.5), the volume
modes are strictly backward waves when s, = 0.1. The

©)
Fig. 6. (c) Modified waveguide modesforrn = +1,g = 0.5, Qg = 0.5, 5o = 0.1, ¢, = 10.

100 gy 10

surface-wave modes S;°-° and S,°3 exist but the S;°* and
S, modes do not exist. The cutoff frequencies of the S;°°
and S,°- are determined by the cutoff curves TM; {°-? and
TM, ,°-%, respectively, in Fig. 3(b). Therefore, the TM?? |
and TM%3 | in Fig. 6(a) should be paired with S;°-° and
S,%3, respectively.

For a strong dc magnetic field (Qy = 1.7), the surface-
wave modes do not exist and all the lower order volume
modes are forward waves in region IV. The cutoff fre-
quencies of the Vi ,, V2P, Vo3, V%% V2, and
V2, modes in Fig. 5(a) and (b) are now determined by the

_cutoff curves TE, ,':, TE, ,°°, TE,,%° TE,,%!, and

TE, ,°, respectively, in Fig. 3(a), and the cutoff frequencies
of the Vi 5, Vs V22, Vi 4%, VO3,, and V2, modes
in Fig. 5(a) and (b) are determined by the cutoff curves
Vi, Vi V22, V2, and V2!, respectively, in
Fig. 3(b). The clear transitions from the forward to the
backward wave nature are observed near the line u,? = 0
especially for the modes withn = —1.

To explain the existence of the surface-wave modes,
Fig. 8 is included. In this figure, Q4 = 0.1, i.e., very weak
dc magnetic fields, the surface-wave modes S,°-°, §,%5, and
5,01 exist. As seen in Fig. 3(a) and (b), the $,°°, §,°-%, and
S,%! modes have their cutoffs determined by the cutoff
curves TM, ,°“, TM, ,°*, and TE, ,°!, which are the
lowest cutoff frequencies among the TE and TM cutoffs
for 8y = 0.1 and ¢ = 0.5. Of course, these lowest cutoffs
are also above Q.. It is concluded that the existence of the
surface-wave modes depend on Qy, ¢, and s,. When these
parameters are fixed, they can only exist if their cutoffs are
the lowest ones among the TE and TM cutoffs and are
greater than Q.. In fact, in Fig. 4(b), there is no surface-
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(a) Modified waveguide modes forn = +1, g = 0.5,

Fig. 7.
modes forn = +1, q = 0.5,

wave mode for s, = 0.1 because the lowest cutoff among

TE and TM cutoffs is the TE, ;%! cutoff which is lower

than Q.. The same arguments can be applied to explain
the nonexistence of the surface-wave modes in Fig. 5(a)
and (b). In the fully filled case, the TM, ;' mode expected
to be a surface-wave mode starts as a backward wave but
changes to a forward wave and becomes a modified wave-
guide mode. The nonexistence of the surface-wave modes in
the fully filled case can be explained by the fact that there is
no air-ferrite interface to guide the surface waves.

Qy = 1.7,50 = 0.9, 0.5, & = 10. (b) Modified waveguide
10.

3—176'0—-18,:

By varying Qg, the behaviors of the surface-wave and
volume modes change as follows: When Qy is small, the
volume modes have a common cutoff frequency Q, [Fig.
3(b)]. For small ¢, all the cutoff frequencies of the TE
modes are larger than Q, [Fig. 3(a)], which implies that the
TE cutoff curves do not determine the cutoff frequencies of
the volume modes. Consequently, for small Q, and g, the
surface-wave and volume modes behave like those predicted
by the magnetostatic analysis. As Q increases, the multi-
mode region II is shifted up, while the cutoff frequencies of
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some lower order volume modes are now determined by the
TE cutoff curves which are independent of Q. As a result,
the lower order volume modes start to propagate as the
forward waves.

For the fully filled case, the surface-wave modes do not
exist, while they exist in the partially filled case though
their existence depends on Qy, sy, and g. As noted in
Section II-C, the V!; | mode cannot be predicted in the
magnetostatic approximation. However, there exists the
V21, mode [see Figs. 4(b) and 5(b)] in the exact dispersion
relation, which has a root of u,a falling in the first interval
of the quotient function [1]. Hence each pair of volume
modes V!, has values of u,a falling in the same interval
of the quotient function. In the partially filled case, each
pair of volume modes has roots of u,b falling in different
intervals of the quotient function, i.e., there is no root in
the first interval of the quotient function for n = —1.

For the higher order volume modes, the asymptotic
dispersion equation (6) was used to obtain the dotted curves
V%40 and V.2{s, in Figs. 4(a) and 5(a). As shown in Table
I1, the asymptotic results agree well with those computed
from (A3) even for the third-order modes. Therefore, the
asymptotic dispersion equations are very useful to obtain
the dispersion curves of the higher order modes. Note that
the agreement is better at Q = 0.6 than at Q = 0.7. This
can be explained by the fact that, near cutoff (Q = 0.7),
the dispersion equation (A3) depends on s,, while the
asymptotic equation (6) is independent of 54, and that, near
resonance (Q = 0.6), (A3) is almost independent of s,.

The dispersion curves of the modified waveguide modes
are shown in Fig. 6(a) and (c) for Q5 = 0.5 and in Fig. 7(a)
and (c) for Q4 = 1.7. It is seen that these modes are not so
strongly affected by the change of Q4. As © increases, the

©
Fig. 7. (c) Modified waveguide modes forn = +1, ¢ = 0.5, Qq = 1.7, 50 = 0.1, ¢, = 10.

TABLE II
RESULTS OF EXACT ANALYSIS

C >mputed Results Asymptotic R >sults
aQ 29y Q Qaqy
5 7 7.¢8 7 8.19
V1,3
b 15.11 6 15.34
s .7 128.31 .7 129.18
V1,90
.6 234,20 .6 234.2
5 .7 10.98 7 11.46
Va3
.6 20.70 N 21.26
5 7 132.41 7 133.26
Va1, 40
.6 240.08 .6 240.13

dispersion curves of the modified waveguide modes ap-
proach those of the corresponding modes existing in a
waveguide partially or fully filled with a dielectric column.
In particular, in the limit of Q — oo, all the dispersion
curves are asymptotic to the line y = &,/2 (u,2 = 0), which
is the normalized phase velocity of electromagnetic waves
in an infinite dielectric (¢,) medium.
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Fig. 8. Surface-wave modes and modified waveguide modes for n = +1, ¢ = 0.5, Q4 = 0.1, 5o = 1, 0.9, 0.5, 0.1,
& = 10,

In Figs. 6(c) and 7(a) and (c), the lower order modes have
their cutoffs at certain nonzero y on the line @ = Q,
where the group velocities of these modes at their cutoff
points are zero. In Fig. 6(c), the TM, ,°' mode was so
named since its cutoff frequency is determined by the cutoff

curve TM, ,%! in Fig. 3(b), and similarly for the higher
order modes. The lower order modes are named TM%] |
and W_,%!. The pair of modes TM%1 , are expected to

have the corresponding cutoffs determined by TM%}
curves, which terminate on the line Q = Q, in Fig. 3(b).
The W_ %! mode behaves like the TE®{ ; mode in Fig. 8.
However, this mode cannot be predicted by the cutoff
curves shown in Fig. 3(a) and (b). It is an unpaired wave-
guide mode. The same situation as in Fig. 6(c) occurs in
Fig. 7(a) and (c), namely, the TM, ,°-%, W_,%3, and W_,°-®
modes in Fig. 7(a), and the TM&] 5, TM%1 ,, TME] |, and
W_,%' modes in Fig. 7(c). As Qy increases, more cutoff
curves merge into the line Q = Q. and, therefore, more
modes start to propagate at nonzero 7y.

IV. COMPARISONS BETWEEN MAGNETOSTATIC AND
Exact RESULTS

Both magnetostatic and exact analyses yield the same
asymptotic dispersion equations (6) and (7). This, therefore,
confirms the validity of the magnetostatic analysis for large
y. However, the modified waveguide modes cannot be
predicted by the magnetostatic analysis. The existence of
the surface-wave modes depends on Qy, 5o, and ¢ in the
exact analysis, whereas they always exist for any values of
Qu, so, and ¢g. According to the exact analysis, the cutoff
frequencies of the volume modes are not necessarily equal
to Q. which is a common cutoff frequency for the magneto-
static volume modes, and the departures from €, become
larger as Q increases and s, decreases. It is also noted that

the magnetostatic dispersion equations (Al) and (A2) are
independent of &,, causing a major error near cutoff.

For a relatively weak dc magnetic field, it is seen from
Figs. 1(a) and (b) and 4(a) and (b) that the validity of the
magnetostatic results for the volume modes is observed in
region II, particularly for the higher order modes and for
large s,. For a relatively strong dc magnetic field, the
validity of the magnetostatic results for the volume modes
is restricted to the vicinity of the gyromagnetic resonance,
as seen from Figs. 2(a) and (b) and 5(a) and (b). In the exact
analysis, the lower order volume modes are forward waves
in regions II and IV, while the magnetostatic volume modes
are always backward waves. Moreover, the V!; ; mode
could not be predicted in the magnetostatic approximation.

V. CONCLUSION

In general, the magnetostatic approximation is valid when
y is large. For a fixed value of y, the validity depends on the
strength of dc magnetic fields and the ratio of radii s,. The
exact analysis gives a major correction to the magnetostatic
results in the fast-wave region, e.g., the modified waveguide
modes, the forward nature of the volume modes, and the
departure of their cutoff frequencies from Q.. The surface-
wave modes always exist in the magnetostatic approxima-
tion. However, in the exact analysis they can only exist
when Q,, g, and s, are such that the lowest cutoff frequency
among TE and TM cutoffs is above Q, and they do not
exist in the fully filled case. By varying s, and Qg, the
fully filled waveguide, the ferrite column in free space, the
uniaxial ferrite waveguide, and the isotropic ferrite wave-
guide can also be recovered. According to the physical
characteristics of the various modes, they have been classified
into the volume modes 22 V,% . the surface-wave modes %S5,

q’ nm>

and the modified waveguide modes ®#TE, and ®2TM},.
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Since the dipolar modes are considered, the n = 1 and
n = —1 modes have different phase velocities. Hence
Faraday rotation exists. The angle of the Faraday rotation
varies for different types of modes. Near the gyro-resonance
frequency, this angle is found to be largest. Thus our results
can have potential applications in gyrators, isolators,
circulators, and particularly phase shifters [10], [13], [17].

The group velocity of the volume modes in the vicinity
of the gyro-resonance is very small compared with the
velocity of light. This low group velocity can reduce the
length of a microsecond delay line from thousands of
meters to a few centimeters [4], [18], [19].

APPENDIX 1

Magnetostatic Dispersion Relations

Jy'(wb) n_ L' (kDK, (ka) — I/ (ka)K,'(kb) (A1)
! J(ub) b L(kD)K, (ka) - I)(ka)K,(kb)

k2
pr=——. (A2)

Hy

APPENDIX 11
Exact Dispersion Relations
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At cutoff frequencies, the modes are no longer hybrid in
nature but are pure TE and TM. The dispersion relations
are as follows.

Transverse Electric Modes
Jy (2b) _ J(kob)N,/(koa) — J,'(ko@)N,'(kob)
e (uz0) T (kob)N, (koa) — J,'(ko@)N,(kob)

u2 = ko’e,.

(A10)
(All)

Transverse Magnetic Modes
g, (u,b) n
s ]
_ Ji (koD)N,(koa) — Ju(ko@)N,'(kob) (A12
Julkob)Ny(koa) — J,(koa)N,(kob)
i [El0 e - 0
Qp? + Qy — OF

1 [ﬂ
- #22

)

(A13)
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